metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sai-Zhen Yang and Xin-Hua Li*

School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang, Wenzhou 325027, People's Republic of China

Correspondence e-mail: lixinhua01@126.com

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.005 Å R factor = 0.045 wR factor = 0.123 Data-to-parameter ratio = 12.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

µ-Terephthalato-bis[bis(2,2'-bipyridine)copper(II)] bis(perchlorate) dihydrate

In the title compound, $[Cu_2(C_8H_4O_4)(C_{10}H_8N_2)_4](ClO_4)_2$ ·-2H₂O, each Cu atom is surrounded by an O atom of a terephthalate dianion and four N atoms of two 2,2'-bipyridine molecules, forming a distorted square-pyramidal geometry. The terephthalate dianion functions as a bridge between two Cu atoms and forms a dinuclear complex. Received 12 January 2005 Accepted 18 January 2005 Online 29 January 2005

Comment

During the study of the structures of complexes in the Cu^{2+/} phen/H₂tp (phen is 1,10-phenanthroline and H₂tp is terephthalic acid) system (Cano *et al.*, 1997; Chen *et al.*, 2004; Sun *et al.*, 2000, 2001; Xiao *et al.*, 2004; Zhu *et al.*, 2004) and in the Cu^{2+/}2,2'-bipy/H₂tp (2,2'-bipy is 2,2'-bipyridine) system (Xiao & Zhu, 2003; Li & Xiao, 2004), we obtained a series of dinuclear complexes and one-dimensional zigzag chain coordination polymers. These complexes display a diversity of structures, and new complexes are constantly being produced through different reactions, and even by a small change in preparation conditions, such as the use of different solvents, temperature or H-atom acceptors. All of these factors encouraged us to research these systems more deeply. The title compound, (I), represents an example.

Each Cu atom is surrounded by an O atom of a terephthalate dianion and four N atoms of two 2,2'-bipyridine molecules in a distorted square-pyramidal geometry (Fig. 1 and Table 1). The 2,2'-bipyridine group acts as a chelating ligand and the terephthalate dianion functions as a bridge between two Cu atoms in a bis-monodentate coordination mode. However, the Cu1–O2 distance [2.803 (3) Å] suggests a weak interaction between the uncoordinated O atom and the Cu atom. Hence, the Cu atom may be also regarded as having a distorted octahedral geometry. The dinuclear cations, perchlorate anions and solvent water molecules interact through multimolecular interactions, generating a polymeric framework (Fig. 2).

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Experimental

An aqueous solution (10 ml) of copper chloride dihydrate (0.3 mmol) was added dropwise to a solution (10 ml) of dimethylformamide containing 2,2'-bipyridine (0.3 mmol), terephthalic acid (0.3 mmol) and 2,2'-dithiosalicylic acid (0.3 mmol) at room temperature. The reaction mixture was filtered and the filtrate was left to stand for about four weeks until blue single crystals were obtained.

Z = 1

 $D_r = 1.620 \text{ Mg m}^{-3}$

Cell parameters from 4176

 $0.35 \times 0.20 \times 0.17 \text{ mm}$

4176 independent reflections 3707 reflections with $I > 2\sigma(I)$

Mo Ka radiation

reflections $\theta = 1.9-25.2^{\circ}$ $\mu = 1.09 \text{ mm}^{-1}$ T = 298 (2) KPrism, blue

 $\begin{aligned} R_{\text{int}} &= 0.014\\ \theta_{\text{max}} &= 25.2^{\circ}\\ h &= -11 \rightarrow 9\\ k &= -13 \rightarrow 13\\ l &= -14 \rightarrow 13 \end{aligned}$

Crystal data

$[Cu(C_8H_4O_4)(C_{10}H_8N_2)_4]$ -
$(ClO_4)_2 \cdot 2H_2O$
$M_r = 1150.86$
Triclinic, $P\overline{1}$
a = 9.9505 (14) Å
b = 11.1049 (14) Å
c = 12.1187 (14) Å
$\alpha = 74.621 \ (2)^{\circ}$
$\beta = 66.750 \ (2)^{\circ}$
$\gamma = 89.352 \ (2)^{\circ}$
V = 1179.7 (3) Å ³

Data collection

Bruker SMART APEX area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS;
Bruker, 2000)
$T_{\min} = 0.77, T_{\max} = 0.83$
6347 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0732P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.045$	+ 0.902P]
$wR(F^2) = 0.123$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
4176 reflections	$\Delta \rho_{\rm max} = 0.86 \ {\rm e} \ {\rm \AA}^{-3}$
342 parameters	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Selected	geometric	parameters	(Å,	°).
----------	-----------	------------	-----	-----

Cu1-O1	1.990 (2)	Cu1-N1	2.038 (2)
Cu1-N2	1.998 (3)	Cu1-N4	2.203 (3)
Cu1-N3	2.008 (3)		
O1-Cu1-N2	92.12 (10)	N3-Cu1-N1	93.83 (10)
O1-Cu1-N3	92.74 (9)	O1-Cu1-N4	98.74 (9)
N2-Cu1-N3	174.70 (10)	N2-Cu1-N4	103.22 (10)
O1-Cu1-N1	163.82 (10)	N3-Cu1-N4	78.10 (10)
N2-Cu1-N1	80.93 (10)	N1-Cu1-N4	97.07 (10)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - \mathbf{H} \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} \hline O7 - H7B \cdots O4^{i} \\ O7 - H7A \cdots O2^{ii} \end{array}$	0.78 (4)	2.48 (4)	3.239 (8)	164 (5)
	0.77 (4)	2.21 (4)	2.916 (5)	153 (6)

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 + x, y, z.

Water H atoms were refined subject to the restraint O-H = 0.82 (5) Å. The other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of 0.93 Å with $U_{iso} = 1.2U_{eq}(C)$.

Figure 1

The structure of (I), with the atom numbering, showing displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity. Unlabelled atoms are related to labelled atoms by the symmetry code (-x, -y, -z).

Figure 2

Perspective view, along the b axis, of the molecular packing of (I), assembled by multimolecular interactions (dashed lines).

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000; data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

We acknowledge financial support by Zhejiang Provincial Natural Science Foundation of China (grant No. Y404294), the education office of Zhejiang province (No. 20040336) and '551' Distinguished Person Foundation of Wenzhou.

References

- Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cano, J., Munno, G. D., Sanz, J. L., Ruiz, R., Fanus, J., Lloret, F., Julve, M. & Caneschi, A. (1997). J. Chem. Soc. Dalton Trans. pp. 1915–1923.
- Chen, F., Li, X.-H., Xiao, H.-P. & Hu, M.-L. (2004). Acta Cryst. E60, m708–m710.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Li, X.-H. & Xiao, H.-P. (2004). Acta Cryst. E60, m898-m900.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sun, D.-F., Cao, R., Liang, Y.-C., Hong, M.-C., Su, W.-P. & Weng, J.-B. (2000). Acta Cryst. C56, e240–e241.
- Sun, D.-F., Cao, R., Liang, Y.-C., Shi, Q., Su, W.-P. & Hong, M.-C. (2001). J.
- Chem. Soc. Dalton Trans. pp. 2335–2340. Xiao, H.-P. & Zhu, L.-G. (2003). Chin. J. Inorg. Chem. 19, 1179–1183.
- Xiao, H.-P., Li, X.-H., Ye, M.-D. & Hu, M.-L. (2004). Acta Cryst. E60, m253– m254.
- Zhu, L.-G., Xiao, H.-P. & Lu, J.-Y. (2004). Inorg. Chem. Commun. 7, 94-96.